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This paper presents a finite volume fourth-order-accurate compact scheme for
discretization of the incompressible Navier—Stokes equations in primitive variable
formulation. The numerical method of integrating the Navier—Stokes equations com-
prises a compact finite volume formulation of the average convective and diffusive
fluxes. The pressure—velocity coupling is achieved via the coupled solution of the
resulting system of equations. The solution of the coupled set of equations is per-
formed with an implicit Newton—Krylov matrix-free method for stationary problems.

For simulation of unsteady flows, a standard fourth-order Runge—Kutta method was
used for temporal discretization and the velocity—pressure coupling was ensured at
each stage also using the matrix-free method. Several incompressible viscous steady
and unsteady flow problems have been computed to assess the robustness and accu-
racy of the proposed method.q 2001 Academic Press
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equations.

1. INTRODUCTION

Compactfinite difference schemes have recently become popular and they are often c
Pad schemes because of their similarity to schemes obtained froendpgaoximations.
Lele [1] has shown that high-order compact schemes require narrower computational
stencils, have better fine-scale resolution, and yield better global accuracy than stan
finite difference schemes with the same formal order of accuracy.

Several compact schemes have been proposed that can be cast into symmetric or
symmetric stencils; see, e.g., Lele [1], Mahesh [2], and Tolstykh and Lipavskii [3]. Adar
and Shariff [4] and Yee [5] present high-order compact methods aimed at problems v
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shock waves. Steady or unsteady Navier—Stokes solutions have been obtained with
pact schemes; see, e.g., Gupta [6], Tang and Fornberg [7], Spotz and Carey [8], Wilson
Demuren [9], or Wilsoret al. [10].

Compact schemes have been used primarily in conjunction with the finite differer
formulation. The incorporation of compact schemes into the finite volume formulation
more complex and has recently been considered by Gaitonde and Shang [11] and Koba
[12]. Gaitonde and Shang [11] developed a range of fourth-order compact difference-be
finite volume schemes for linear wave phenomena. The formulation combines the primi
function approach with five-point stencil of sixth- and fourth-order methods. Kobayashi[1
has formulated and examined a wide range ofePfatite volume formulations based on
sliding averages of the variables and has investigated their properties related with accul
spectral resolution, boundary conditions, and stability.

To the authors’ knowledge the particular implementation problems related with hig
order compact finite volume schemes for multidimensional Navier—Stokes equations w
not previously addressed. Hence, the main objective of the present work is to introd
a fourth-order-accurate numerical method of integrating the incompressible form of 1
steady or unsteady Navier—Stokes equations in primitive variable formulation. A comp
fourth-order-accurate scheme for the discretization of the averaged convective and diffu
cell face fluxes is developed and implemented.

Special effort is dedicated to the numerical treatment of the nonlinear cell face avera
convective fluxes and the pressure—velocity coupling. The resulting set of equations
implicitly solved with the so-called Newton—Krylov matrix-free method. These techniqu
were studied in Marques and Pereira [13] in the context of the compressible Navier—Stc
equations, using ENO methods for the reconstruction of the primitive variables. The
authors presented an implicit Newton—Krylov method, which uses the GMRES method
gether with various preconditioning techniques, such as Jacobi, polynomial approximati
to the eigenvalues, or the spectrum. The present paper proposes an implicit Newton—Kr
method for the incompressible Navier—Stokes equations using the compact finite volt
method.

For unsteady flow problems the fourth-order-accurate Runge—Kutta method is used.
different flow test cases are considered in order to assess the robustness and accuracy
method.

In the next section we present the main features of the numerical method together \
the method used to solve the coupled set of resulting equations. The section closes
the deconvolution procedure, used to compute the point values of the variables, and
pressure—velocity coupling. Section 3 is devoted to the presentation of the flow test ce
that demonstrate the method accuracy. The paper ends with summarizing conclusions

2. NUMERICAL METHOD

The continuity and Navier—Stokes equations that describe the incompressible flow ¢
Newtonian fluid can be represented in the intrinsic form as

(@ divi(v)=0 (2.1)

(b) % +div(v®V — o, (v)) = —gradp, (2.2)
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FIG.1. Mesh example and notation.

wherev is the velocity vector fieldp is the specific pressure scalar field, and
o, (V) = v(gradv + (gradv)")

is the deviatoric stress tensor according to the Stokes model.
To develop the finite volume formulation the equations are integrated over each con

volume (see Fig. 1). With the application of the Gauss divergence theorem, Egs. (2.1)
(2.2) become

(a) Continuity equation
/v- n=0 (2.1a)

(b) Navier—Stokes equations

/(v -N)V—o,(V)-n= —/ pn, (2.2a)
a6 a6

wheredd denotes the boundary of a control volumeandn is the unit outward point-
ing normal vector ta6. In the finite volume approach each control volume boundary i
usually further decomposed into piecewise linear elemeiits; Uile v«, Wherey, are
line segments such that the intersection of two adjacent elements are two vertice po
Equations (2.1a) and (2.2a) are general integral equations that are valid for any coc
nate system. For simplicity, we present the fourth-order method for a Cartesian grid, v
coordinatesX, y) (see Remark 2.1 on the formulation in curvilinear coordinates). Henc
let {6}, wheretj = [xi, Xi+a] x [Yj, Yj+1], with AX = Xi11 — X, Ay =yj11 — Y}, be a
uniform Cartesian partition of a rectangular dom&irc R?. Then, Egs. (2.1a) and (2.2a)
can be written in the averaged flux balance form
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(a) Continuity equation
(Wi — [W]DAY + ([V']j41 — [V]j)AX =0, (2.3)

wherev = (u, v), and, for instance,

1 Yj+1
Wi = — i, y)dy, 2.4
@1 =5y [ vy (2.

(b) Navier—Stokes equation
C(v) — D(v) = —Gp. (2.5)

The lettersC, D, andG denote the integral convective, diffusive, and gradient maps, re
spectively. That is, locally we have

[CijW]* = (UW]i 41 — [UW]) Ay + ([v0 ] 41 — [VO*]j) Ax (2.6)
[Cii V] = (W]iy1 — [WY])AY + ([00*] 41 — [T99]j) AX (2.7)

oo o[ ([5], - [5])o ([3].-[])o e
oo o[ ([5], - [5])ore (5],-[5])o] s

Gijp = (([PTi+1 — [P 1DAY, ([P*]j+1 — [P]))AX). (2.10)

We proceed in the next section with the derivation of the compact method for discretizi
the cell face fluxes appearing in Egs. (2.6) to (2.10).

2.1. A Compact Fourth-Order Finite Volume Method
for the Navier—Stokes Equations

To compute the fluxes of the finite volume discretization of the Navier—Stokes equatio
we look for a Pad type relation between the fluxes and the cell average of the primitiy
variables. The relations can be obtained in several ways; we use the common Taylor s
approach.

The high-order finite volume discretization should be associated with the variable c
averages instead of its point values. However, in many reconstruction procedures (
for example, [14]), it is common to recover the point values, which are represented b
piecewise reconstruction polynomial. To obtain the fluxes along the cell faces, it is th
necessary to use a high-order numerical integration method (Gauss quadrature, Simy
etc.) that integrates the flux from a set of point values previously selected.

In the present approach, we store and use the cell averages during all the processe
point values, if necessary, are recovered at the end of the computation by a deconv
tion procedure; see Section 2.5). This strategy, for the same order of accuracy, simpl
the computations by reducing the size of the stencil and avoiding the integration of
reconstruction polynomial associated with point-value reconstruction mentioned above

2.1.1. Linear Convective Fluxes

Because of the nondissipating nature of their truncation error, we consider cente
schemes. So, by symmetry, the coefficients on the left and right sides are equal.



A FINITE VOLUME COMPACT METHOD 221

Let us consider thaY as an example. The problem can be stated as follows: Find coef
cientsa andb that satisfy the relationship

ataxUy + W + art_xx¥ = b(‘[%AXUXy + T,%Axﬁxy) + 0O(h%), (2.11)

whereh is a grid parameter, for example = 42 +» WhereAis the area, an@ the perimeter
of the control volumeAXx as well asAy are the grid spacing in the andy directions
respectivelyz is the shift operator, and

AX/2  Ay/2
Tay2UX+ &,y +n)dédn
Y = —AXx/2 J—Ay/2 XAy y (2.12)

is the sliding average. Since we only need the fluxes at the cell faces, taking into accc
Eqg. (2.11) it is only necessary to store the values of the sliding averages at the centroic
the control volumes.

With the use of truncated Taylor series (TTS), one can exp&rgdy) in the vicinity of
(Xo, Yo) @s

(1,0) [€9H)

+ (Y = YU + (X — X0) (Y — Yo)u$§
(20) 0,2 2.1

U(X, y) = Uo + (X — Xo)Ug

u u
+(X—X) 2 +y— Y) +(x—x0)(y YO)—
u(1,2) u(3 ,0) (0,3)
+ (X — Xo) (Y — YO)ZOT + (X —%0)3 2 — - ¥o)® 06 +O(h*).

(2.13)
Because we are interested in the mean values only, taking into account that the integra

linear operator and the origin &t0, y0) is the middle point of the face for which we want
to compute the flux, we have

1 ~AY/2 U(O'z)
TTSW) = / TTSu(x0, yO+ n))dn = up + Ayzﬁ + O(h%) (2.14)

Ay —Ay/2
1 Ay/2
TTS1_aAxWY) = —/ TTSu(x0+ AX, yO+ n))dn
AY J_ayp2
(2,0 0,2 (3 0)
u 24u
= Up + AyuS? + Ax?=° Ay2Z0 Ax30
ot AYlp T+ 2 T8 57 T 6
1,2
AXAY? o(h* 2.15
+ Y5t (h%) (2.15)
X rAy/2
TTSu(x0+ &, y0+ n)) d& dn
_Jo —Ay/2
TTHr_1a0Y) = ~
ugl,O) ) U(()Z’O) 5 uE)O,Z) (1 2)
= A A A AXAY? 2
Uo + AX—o— + AX 6+y24+xy48
u(30)
+Ax3 7 + O(h%), (2.16)

and similarly for the other terms.
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Replacing these expressionsin Eq. (2.11) and nullifying the coefficients of the derivativ
one obtains a linear system of equations. Solution of this problem gived /4 and
b =3/4.

Therefore, to compute the edge averages at the control-volume faces, it is only neces
to solve one direction at a time. This requires the solution of only tri-diagonal solutior
Indeed, for a fixed indej (which corresponds to a horizontal strip of the domain), we
solve the tri-diagonal system of equations resulting from Eq. (2.11) to obTéjr)l in that
strip. Then repeating this process to all strips we obtain the valu@fp)ffor all control-
volume faces. The values for other cell face averages are computed analogously. Not
passing, that the strip-by-strip computation of the cell averages is the same procedure
to compute the derivatives in the compact finite difference method [1].

To facilitate the description of the method of solution of the Navier—Stokes equations
is convenient to express the previous procedure in matrix form,

ASUDY = BEUOY, (2.17)

and for the remaining terms we have

AU = BSUTY (2.18)
ASVYY = BEV WY (2.19)
ATV = B (2.20)
APRY = BPpY (2.21)
APP* = BP P, (2.22)

where, for example,
Ax(nfx x nfx), By(nel x nfx)
and

™ (neb, ¢¥(nfx), p*(nfy),

with ¢ standing for the vector quantities (cell averages of the primitive variables and its c
face averaged values) and

nel= (ni — 1)(nj — 1)
nf = ni nj
nfx=ni(nj—1)

nfy = (ni —1)nj

ni, nj being the computational grid points in tkeandy directions, respectively.

Note that matrice#\ and B, apart from points close to boundaries, are the same for &
variables. Also, all matrices have a block diagonal form reflecting the decoupling of t
approximation of the cell face averages in one direction from the other. For instance,
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matrix A can be represented as

A 5

with A,(nfx x nfx) or Ay(nfy x nfy) being the tri-diagonal matrix corresponding to a
horizontal or vertical strip, respectively, of the Cartesian grid.

2.1.2. Diffusive Fluxes

For the diffusive fluxes, for exz‘;tmpl%‘,i—y coefficientsa andb are obtained from

a %y + my +a my b
Tax—— + — +aT_pox— = —
Max T ax Mo T AX

(o1 axtY = 1L UY) + O(h"), (2.23)
with
T

u
o _ = Hix, d. 2.24
ax = 2y ) sy 8X(X y+n)dn (2.24)

The solution of this problem gives= 1/10 andb = 6/5.
In matrix form and for all the existing terms we have

ay
A0 20 _ oy (2.25)
X ax X
—X
U _ pogy (2.26)
ﬁy
o2 — B0y (2.27)
DE"X = Bo»Y (2.28)
y ay = yV . .

Generalization of the compact finite volume representations of convective or diffus|
fluxes can be found in [12].

2.1.3. Nonlinear Convective Fluxes

The quadratic termgju¥, tvY, vu*, vv* that appear in the momentum equations nee
more careful treatment. One way to extend the method used above to handle such ter
as follows (for example foat¥): Compute coefficienta and{b; }i—; » such that

ata Uty 4+ UlY + ar_ Ut

2 2
=D BTy ax @+ D bt s @7+ O(h). (2.29)
i=1 i=1
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Solution of this problem givea = —1/2, andb; = 1/4, b, = —1/4. However, this is a
fourth-order approximation for the square of the sliding averages. Taking square rc
leads to a second-order approximation for the sliding averages. This difficulty should
overcome by taking an eighth-order compact method for the squares. We proceed
different direction, however.

Indeed, instead of trying to approximate the square of a cell face average, for exam
[UT]i,1, by the squares of cell averages I([(@‘V]i+1/2)2, we approximate the former by the
squares of the cell face averaga”];1)? together with some cell averages. For example
if we compare the Taylor series expansion@i{]; 1 with ([UY]i;1)?, up to fourth order,
the remaining term is

2
% (UPD)? + O(h%),
which vanishes for a field that is independent of the coordigafhis means that for the
nonlinear terms, additional information must be supplied to take into account the variat
of the function along the cell face.

Thus, a second-order approximationué(f’l) is enough to recover the desired accuracy
for the approximation of the nonlinear flux. A simple computation shows that if

AyUE,O’” = al[ljxy]i+l/2,jfl/2 + az[l_lxy]i+1/2,j+3/2 + as[ljxy]ws/z,jfl/z
+ au[ V)i a/2 432 + O(AX?, AY?), (2.30)
then
y=az3= L =y = -
] = a3 = 2’ 2—a4—4,

and consequently,

1
[O0]i 1 = (Ui + @(—[ny]iu/z,j—l/z + [Uiv1/2,j 432

— 0432, )12 + [V]i 372 j+3/2)% + O(h*). (2.31)

The remaining termspl?]i 11, [79*] 41, and fv*] 11, are discretized analogously.
Again, to simplify the exposition, the above discretization procedure is stated in the fo
of maps,

o = BS (@, W) (2.32)
wY = BS @, v, W, ) (2.33)
O = BS @Y, 7Y, %, v) (2.34)
7* = BS (079, 1), (2.35)

whereB is a nonlinear map.
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2.1.4. Boundary Conditions

The boundary conditions at the control-volume faces which intersect the domain bounc
need to be implemented in the Raflhite volume compact operator. Dirichlet or von
Neumann conditions require the prescription of flux values in the respectiesdpadator.

As proved in [12], fourth-order boundary conditions are stable and necessary to keer
global accuracy of the method. They differ from the common boundary conditions usec
compact finite differences [15], in that the finite difference scheme requires a downw
(very unstable) approach for the inlet convective term while under the compact finite volu
method we can use the inlet convective flux without approximation. We briefly discuss t
issue below.

Take, for instance, a prescribed Dirichlet boundary condition. This type of boundz
condition abounds in fluid problems. The no-slip condition on a wall for the componer
of the velocity, an inlet boundary condition on any variable, the no-flux condition on
symmetry line, and the far field condition are examples of this type of boundary conditic

Let us write the balance equation of a control volume close to a left boundary. To
ideas, we consider the problem of handling the convective flux at a prescribed left bound
The balance equation near the boundary can be written as

Cit12—Clit2t Clojs1—Clpj+---=0, (2.36)

whereC3 ;. 1,2, Ci j11/2, cg/z,m, andcg/ij denote the convective flux crossing the respec
tive faces. Now, because the value of the variable is prescribed at the inlet (fagell/ 2),

we insert the exact value (iffj+1 » In this equation without any approximation. The re-
mainingC3 ;15 cg/m, andC;, ; fluxes are evaluated using the compact method &
explained above. For instance, to compute the flux

C3 12 =UUy; 10AY, (2.37)

we use the approximation

_ 2
O]z j412 = ([V]2+41/2) —[U™]s/2,j—172 + [U]5/2, 1372

T

2
—[U7/25-12 + [ny]7/2,j+3/2) )

where [¥]3 j 11,2 is evaluated using the compact finite volume method as

1 1 3
Z[Uy]l,jﬂ/z + [W]2j41/2 + Z[Uy]S,j+1/2 = Z([nyls/z,jﬂ/z + [U]s/2,j+1/2)

and so involves 4¥]y 112, Which is known, and U]z ji1/2, [UY]3/2j+1/2, and
[U*]s/2,j+1/2, Which are to be determined in the solution process. Since the exact va
of the convective flux is available and enters directly in the balance equation and ¢
the exact value of the cell face averagé]f j.1/» is prescribed and enters directly in the
compact reconstruction, the compact finite volume method does not require any downv
extrapolation.

In contrast, the corresponding finite difference treatment requires an equation
[0u/dx]1,; at the inlet boundary,1j. The approximation is asymmetric and in its simplest
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form (for fourth-order accuracy) can be written as [15]

ou au 1
— 3| — = —(—17u 9u 9u3 — Uy). 2.38
{ax]lj + {BXLJ 6AX( 1+ 9u2 4 9uz — Uy) ( )

Now this last equation is a downwind extrapolation, which, as reported in Carprater
[15], is unstable. Other types of boundary conditions are handled analogously.

Remark 2.1. The discretization procedure was presented for a Cartesian mesh. In 't
remark we briefly discuss the extension of the formulation for curvilinear coordinates. T
latter is indeed deceptively simple.

Consider the conservative form of the Navier—Stokes equations written in a gene
curvilinear coordinate syster'(),

1 9 o
Zipacrdu =0 (2:39)

where we have used the summation convection of repeated indexes, the Latin supersc
indicate the Cartesian components of vectors and tengetsjetg,s, with g4 the metric
matrix, J is the JacobiarG is the cofactor matrix, witly' the Cartesian coordinate system.
Again, to fix ideas we concentrate in the convective flux. Integration over a control volur
6 then leads to

9 o
% coyiul 4. Jdx =0, 2.40
[ (Criu +-) (2.40)
where in two dimensiondx = dx1d>§2. After using the Gauss theorem, we are left with
the problem of approximatinGiulul , Ciu2ul , ..., C3u2u? , where, for example,
x2+Ax2

—2
Clulul = / Ciutuldx?.
X2
The problem is solved if we are able to discretize a triple product. For instance, consi

the productCiulu? . Then, to discretize the latter we recursively apply the procedure f
double products to the subproducts

2 2 2
(Ciut)u?, Ci(utu?), and(Ciu?)u?
yielding

—2 —2 —2. =2 1 —=2 —12 —12
[Clulu? ]i+l = [C} ]Hl[u1 N[u2 ]+ EZ[C% LH(—[Ul livyzj-12+ Ut Jitay2j432

12 12 1
— U Tivszj-12 + [UY Tivazj+3/2) (—[u? ﬁi+1/2,j—1/2

—12 —12 —12
+[u2 Jivryz 432 — (U2 Jigszj—1/2 + [U2 ]i+3/2,j+3/2)

1 — —12 —12
+ 195U T+ (= [T Jijaa a2+ [CL Jivazjiar2

—12 —12 —1
- [Cll ]i+3/2,j71/2 + [C% ]i+3/2,j+3/2) (_[uz 2.|i+1/2,i—1/2
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—1 —1 —1
+[u? ﬁi+1/2,j+3/2 — [u? ﬁi+3/2,j—1/2 + [u? ﬁi+3/2,j+3/2)

1 —2 —12 —12
+E2[U2 liva(=[C ]i+1/2.j—1/2+ [Ci ]i+1/2,j+3/2

—12 —12 —12
_[Cll }i+3/2,j—1/2+ [C% ]i+3/2,j+3/2) (_[Ul lit1/2,j-1/2

—1 —1 —1
+[u? ﬁi+1/2,j+3/2 —[u? ﬁi+3/2,j—1/2 + [ut ﬁi+3/2,j+3/2) +0(h%). (2.41)

Thus, to close the approximation it is only necessary to choose an interpolation mett
of the same order of accuracy as the interpolation of the variables, for the geometry
compute the geometrical data appearing in the discrete equations. For instance, to
computing time, the cofactor
—2
Ci
can be computed using the Lagrange method for the cell averages,
—12 1 1 dy?
ci =——— [ =. 2.42
1 AX AX2 [, 9x2 (2.42)

The latter can be computed in the preprocessing stage and stored for later use, by usil
interpolation method for the Cartesian coordinates and numerically integrating the resul
interpolating function. The resulting approximation of the cell-averaged cofactor should
of the same order of accuracy as the interpolation for the variables. The remaining te
are discretized analogously.

Although the length of the expressions increases, the general ideas developed fo
Cartesian grid can still be applied. In particular, we solve for one direction at a time, &
for each strip in the computational space we invert only tri-diagonal systems of equatic

After approximation of the continuum problem with a discrete one, the next issue
related to the procedure for solving the resulting set of nonlinear equations. This is
subject of the next section.

2.2. The Stationary Navier—Stokes Equations

Substituting the discretized terms, Egs. (2.6)—(2.10), into Egs. (2.3) and (2.5) yields
following nonlinear coupled system of equations:

(Wisa = [WTDAY + (V41 = [V]))AX =0 (2.43)
(U] 41 — [UW]) Ay + ([vU]j41 — [VU"]) AX
(5], - B (5], [51)+
X Jiyr  LOX ] Y Jjp1 LAY J;
— ([Pli+a = [Pl AY (2.44)
([ ]i41 — [ AY + ([0 ] 41 — [07]j) AX
v’ 0’ " "
(5D (5L - [5)+
=[P+ — [P AX. (2.45)

These must be solved together with the compact representation of the fluxes.
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The previous system of equations is nonlinear, coupled, and degenerate—in the s
that p is not unique.

This nonlinear system of equations can be solved in several ways. In the present worl
consider a coupled implicit method. So, because of the complexity of the relations betw
the fluxes and the primitive cell averaged variables and to avoid inverting the relatively de
pattern of the resulting system of equations the Newton—Krylov method with a matrix-fr
technique is selected. This is explained in the next section.

2.3. The Newton—Krylov Matrix-Free Method

Roughly speaking, Krylov methods (such as GMRES and BI-CGSTAB) are based on
minimization of the residual in a Krylov space. These methods are appropriate for gen
sparse matrices. One important feature of them is the fact that only matrix—vector prod
and obviously vector-vector products are required.

Given the discretization above, which we write symbolically as

N(x) =0, (2.46)
the corresponding Newton’s method proceeds as
J(Xi)ox; = —N(Xi), (2.47)
whereJ(x;) is the FEchet derivative oN at the pointx; and
Xit1 = Xi + 8Xj. (2.48)

The matrix—vector products appearing in the Krylov process are of theltypep, for
some vectop. The productl(x;) p can be represented as the Gateaux derivative in tf
direction of the vectop, that is,

aN
Jxpp = %(Xi)» (2.49)

where, by definition, the Gateaux derivati%(xi) is given by

N(Xi +tp) — N(x;)

: (2.50)

oN i

%(Xi) = t'ﬂg)
Note that to avoid introducing rounding errors in the computation we normalize the directi
and computd(x;) p = %(Xi) Ipll2 with p = p/IIpll2.

Grosso modpthe FEchet derivative, conveys the information on the variation of vectc
functionN in any direction, whereas the Gateaux derivative measures the rate of variat
of this function in a given direction only.

We can use these observations to devise a matrix—free Newton—Krylov method, tha
a Newton-Krylov method where the éghet derivative is not needed and consequentl
not stored. Thus, the equation is linearized using the Newton method. Then, we solve
resulting linear system of equations with a Krylov method. To bypass the computation
the FEchet derivative we note that: (a) formally in any Krylov method, what is required
not the FEchet matrix, but rather its product with some vector; (b) this product is equivale
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to the Gateaux derivative times the norm of the given vector, as mentioned previou:

and, finally, (c) for practical purposes, the Gateaux derivative can be approximated by

unilateral finite difference

N(Xi +&p) — N(Xi)
&

N
%(XI) = (2-51)
for some smalk > 0. So, every time a produdix;) p is needed in the Krylov method,
we estimate the Gateaux derivative by using Eq. (2.51) and compute the product by u
Eq. (2.49).

Notwithstanding the fact that the procedure described above can be used to find the
sired root of the nonlinear problem, it is well known that to be useful for a wide range
problems, the Krylov methods require a preconditioning method. Moreover, this precor
tioning method determines the overall efficiency of the Krylov method, and the usual IL
preconditioning uses the matrix structure.

Recently, however, Brown and Saad [16] introduced the notion of Flexible-GMRE
(FGMRES). These methods consist of the minimization of the residual on a conveni
subspace, which allows the use of any partial solver as preconditioning. For instance,
considered the FGMRES method together with the GMRES method as the preconditiot
(FGMRES/GMRES). They compared the FGMRES/GMRES method with the conventiol
GMRES/ILU(0) and in the problems studied, both methods displayed a similar converge
history. In general, the method will converge if the steepest descent direction belongs tc
subspace where the minimization takes place.

The use of a Krylov method as the preconditioning method for the FGMRES is t
key for an efficient Newton—Krylov matrix-free method. In the present work, we sol
the nonlinear system of equations (2.43) to (2.45) by using the Newton—Krylov matr
free method, with the FGMRES/GMRES. Next, we briefly describe the method and 1
preconditioning technique used in the computations.

Let us consider the GMRES method for the solution of a general linear system of eq
tions,

AM~(Mx) = b, (2.52)

where A stands for the matrix of coefficientd] is the preconditionerx is the solution
vector, andb is the nonhomogeneous term. In the Arnoldi process of the GMRES, :
orthonormal basis is constructed for the Krylov subspace

sparro, AM~ro, ..., (AM™H™Mrg}

by using a modified Gram—Schmidt method. In this process some vegtersv ~1v;, for
some convenient; are generated and the solution is sought as a linear combination
them. Note that the preconditioner is the same fozjalNow, in the FGMRES to allow for

a greater flexibility in the preconditioning process within the GMRES, the preconditioni
may vary from ong; to the other; thatis, in the FGMRES we haye= Mflvj .Indeed, the
residual will be minimized in this space. So, in the FGMRES/GMRES used in the pres
work to compute the;, we solve the following system of equations

Az =v;

using the GMRES for some prescribed convergence level.



230 PEREIRA, KOBAYASHI, AND PEREIRA

At this point it is useful to summarize the procedure as an algorithm.

1. Start. Initialize the variablegq = (ug, Vo, pPo). Choose the dimension of the Krylov
spacam. Seti < 0.
2. Newton—Krylov Method:
(a) Setgy < 0.
(b) Arnoldi process:
i. Computerg = —N(X; + &), 8 = |[roll2, andv; = %. Define an(m+41) x m
matrix I—_Im and initialize all its entrie$y ; = 0.
i. Forj=1,...,m,do
Solve to a prescribed levélxi)z = vj;
Computew = J(Xi)z;
he.j = (W, Vi),

Fork=1,...,j, do{
W=W— hk,ij;
Computehj 1 j = w2 andvj;1 =
iii. DefineZy =1[z1,..., Zm]-
(c) Form the approximate solution: Compute ém = & + ZmYym, where ym =
argmin, ||e1 — Hmyllz ande; = [1,0, ..., 0] .
(d) Restart. If satisfied exit the Arnoldi process, else §gt— &, and go to step b.
3. Update. Set(ui.1, Vii1, Piz1) = Xir1 < X + &m. If satisfied stop, else go to step 2.

W
i

At this point we should stress that the vector functidmised in the Newton method is
nothing but the discretized continuity and Navier—Stokes equations. Therefore, each pro
J(Xi) g, for some vectoq, in the Newton—Krylov step requires only the computation of the
balance equation with the vectar+ ¢q (compare with Eq. (2.51)).

Because all equations in the full coupled system are forced to be simultaneously satis
the method is very robust and can be applied to any Reynolds number. As we said, the m
representation of the Echet derivative is dense. Hence, it is very hard to implicitly solve
the Newton’s equations without the present techniques.

Remark 2.2. The Newton method can be directly applied to the stationary equatior
However, asis well known, the Newton method requires a “satisfactory” guess of the solut
as the starting point. There are several ways to overcome this problem, for instance, a
minimization of the residual and the iterative increment of the Reynolds number. In t
present work, we obviate this problem by using the implicit first-order Euler method
solve a pseudo-temporal problem. That is, starting witlve solve the nonlinear (NL)
problem,

Find V"1, p) e R?N x RN, where N is the number of unknowns in the mesh, such that

([T = [ Ay + (V)1 - ) ax =0 (2.53)
At
Vit =V + W(_Cij ") + Dy (v — Gj; p™ (2.54)

and (V"1 p) e R?N x RN satisfies some boundary conditions

In this expressiomny (6;;) denotes the Lebesgue (volume) measure of the control volun
6;j. For a sufficiently smallat, the NL problem has a unique solution and the Newtor
method converges quadratically toward it. We prove it by using the Banach fixed po
theorem for complete metric spaces and Theorem 6.3 in Girault and Raviart [17].
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Thus, letV denote the Banach space of discrete averaged vector fields associated w
given grid, and/, the subspace of that are zero at the domain boundafy. Let Sdenote
the linear space of discrete scalar fields associated with a given grid. Define the conserv
divergence operatdvl: V — Sas

((Wis1 — [WIDAY + ([V}]j+1 — [V]j) AX

Mij (V) = My @)

(2.55)

forallv = (UY, v*) € V. Similarly, define the conservative gradient oper&gr. S— V as

(([#Y]i+1 — [6Y1) Ay, [¢¥]j41 — [9¥])) AX)

my (6ij)

(Gm)ij(¢) =

for all ¢ € S. Then, we have the following decompositiody = (Vo N keM) & (Vo N
imGn,). Indeed, given @y € (Vo N keM) & (Vo NiMG,), it follows that there existsa €
S, such thatg = Gm¢ andMGp¢ = 0, or ((Dx)? + (Dy)?)(¢) = 0, where, for instance,

([#"]i1—[97])

(Dx)ij (9) = T Ax
for all ¢ € S. A discrete version of the separation of variables approach yields the eig
value problemgDy)?(¢) = A and(Dy)?(§) = —Ap, wherep(ij) = ¢(i)@(j). Now, the
eigenvalues of, for instancé),)?(¢) = A are all negative because it is the square of a
antisymmetric operator. Ther = 0. Now, given av € Vg, we writev = w + Gn¢, and
determingp € Sfrom Mv = MG¢. Then,w = v — Gnh¢ as required.

Let P:Vp— Vo N ke be the (oblique) projection ontd, N kerM. Letvy € kerM be
a discrete solenoidal vector field that satisfies the boundary conditions. Defiigtba
functionF : Vo — Vg

F =idy, + AtP(—Cy + Dm + 9) — Vg (2.56)

for some functiong: Vo — Vyq, and where the map§,, and D, are the conservative
convection and diffusion finite differences maps; for example,

G
(Cm)ij = my (6ij)

Hence, by puttinggy = vo + v4 we conclude that the NL problem is equivalent to finding &
rootvg € Vo of F with a functiong given by the remaining terms in (2.54) after substituting
V = Vg + Vg in this equation. Now, applying the Newton method yields

Vg™ =g — (D) (F(vp)). (2.57)

where the superscriftdenotes a Newton iteration (not a time step). Solution of (2.57) |
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equivalent to finding a fixed point for the function
H = idy, — (DF)"1(F). (2.58)

To prove the existence and uniqueness of the fixed point we shoW ibat contraction
on the closure of the open b} (vj) for some O<r. From the definition of we have

DF = idy, + AtDK,
where
K =P(~Cpm + Dm + 9).
For sufficiently smallAt, it follows that

HAtDK|Br(I)8) <1

and soDF is invertible in the Banach algebra of linear operatord/pffior all v € By (vg).
Moreover, we have

(DF)!=idy, — AtDK 4 o(AtDK).
Then, for arbitraryu, v € B, (vg) we have

IHW) —HW)|I = lu — v — (F(u) — F(v) — AtDK(F(u) — F(v))) + o(At(u — V)|l
< CAtflu—v]|,

whereC is a positive real constant, and we have used the smoothn&ssipandK (they
are vector functions with polynomial entries). For a sufficiently smdll it follows that
CAt < 1. Also, given au € B, (vg) we have

[HW) = vg|| = [[HwW = H(vg) || + [[H(v5) — Vo
< |lu—vg||+ AtL

for some positive constarit. For a sufficiently smallat, this shows thaH(B; (v{)) C

Br (v§) and, so by continuity oH it follows that the closure of the ball @, (v)) is
invariant forH. Now the Banach fixed point theorem gives the existence and uniquenes:s
the fixed pointin oB; (v3)). Finally, the convergence characteristics of the Newton methc
follow at once from the smoothness Bf(for instance, apply Theorem 6.3 in Girault and
Raviart [17]). So, by controlling the CFL (possibly during the pseudo-time evolution) w
can ensure convergence as well as accelerate it.

2.4. Pressure—Velocity Coupling

Since the maxtrix-free approach allows a coupled solution of the discrete Navier—Sto
and continuity equations to be taken without too many memory requirements, the nat
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option for solving the complete coupled system of equations was followed. Pressu
velocity coupling is, then, automatically guaranteed.

We use a centered method in a collocated grid. Therefore, it is natural to inquire ak
the possibility of the existence of a solution with a spurious pressure oscillation patte
Clearly, the elimination of the spurious pressure oscillation is equivalent to di ked.
For then, the only solution dBp = 0 is p constant. It is easy to see that with the fourth-
order compact finite volume method, dim K&ér= 1 on uniform grids with an odd number
of control volumes and periodic or Dirichlet boundary conditions. Also, for all the type
of boundary conditions and meshes that we have used in the computations, the georr
multiplicity of the null eigenvalue was 1, which in turn yields dim k&e= 1. Finally, it
should be noted that for all test cases that follow, the pressure fields revealed a patterr
from spurious oscillations.

2.5. Deconvolution of the Mean Fields

As mentioned above, we store and solve for the cell average values of the primif
variables. In a fine grid, the latter are close to point values. However, sometimes we r
the local point values of the physical quantities, for example, to plot the pressure distribut
We recover the point values from the predicted mean values by a “deconvolution” technic
For simplicity, we use an explicit deconvolution where the point values, stored in the me
vertices, are obtained from the existing mean values at the cellfac®s, to obtain fourth-
order-accurate point values af,(v, p), the general procedure, for example, fidn the x
direction, consists of computing coefficierfbs}i—1 > such that

2 2
u = Z b ‘[(_H_%)AXGX + Z b ‘E(i_%)Alex + O(h4). (2.59)
i=1 i=1

Solution of this problem giveb; = 7/12, b, = —1/12. We remark that this is done in
postprocessing, that is, after the computation of the flow field is finished.

2.6. The Time-Dependent Navier—Stokes Equations

Simulation of an unsteady laminar flow is carried out using the fourth-order Rung
Kutta method for the semidiscrete form of the equations. That is, startingwitkie
compute

v — %(kl + 2kp 4 2k3 + kg) — AtGp™H? (2.60)
MVt =0, (2.61)
where
k =(-C+D)v), i=1...,4 (2.62)
and

vi=V" (2.63)
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At
V2 =V"+ - (~C+D)(vy) — AtGp,

(2.64)
Mv, =0
vz =V 4+ E(—C—i- D)(vp) — AtG
3= 2 2 Ps (2.65)
Mvz; =0
Va = V" 4+ At(—C + D)(v3) — AtGps (2.66)
Mvy = 0O, .

where
i, pi) i=234n+1

are solved in a coupled way with the Krylov matrix-free method explained above.

3. NUMERICAL RESULTS

This section presents numerical results for several test cases aimed at assessin
accuracy and efficiency of the proposed method for steady or unsteady flow problems.

3.1. Analytical 2D Cavity

In this test case, we consider the recirculating viscous flow in a square cavity driven
combined shear and body forces. Figure 2 shows schematically the geometry of the prot
and boundary conditions for the velocity field. This benchmark test case appeared in £

u (x 1)=16,(x )
—>

X

FIG. 2. Geometry of Problem 3.1 and boundary conditions.
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et al. [18], where the details of the problem can also be found. Here we summarize
relevant information. The vertical body force is given by the expression

B(x,y;Re) = %[24 / £1(X) + 261085 () + &1 (¥)¢2(y)
—B4[Y2)Y3(y) — £2(Y)5(N)Y1(X)],
where
(X)) = x* — 2x3 + x2

oY) =y —vy?
Y1(x) = &0¢7 (x) — [¢1(0]?

Ya(x) = / 21(X) 1 (X)
Ya(y) = 22(0)85"(Y) — L85 (Y)

forall (x, y) € @ = [0, 1]°. The Dirichlet boundary conditions correspond to zero velocit)
at all boundaries except for the top surface where

u(x, 1) = 1601(x), x €[0,1].
An exact solution for this problem exists and is known to be

u(x, y) = 851(x)Z5(y)
v(X, y) = —81(X)¢2(y)

and

8
p(X, y; Re) = Re[24< / §1(X)> 25" (Y) + 21(X)85(y)
+64Y2(X){C2(Y)25 (¥) — [22(0)]%.

We have considered four meshes, and the parameters for the simulation aré Red
Uref = £ref = 1. Note that this benchmark has the particularity of having an equal flow fie
pattern independent of the Reynolds number. Tables | and 1l list the errors and numel

TABLE |
Error Norm(L ;) Dependence on Mesh Size for Test Case 3.1: Pontual Values

U \Y P
Grid Error (L) Order Error (L) Order Error (L) Order
7x7 6.87E-4 — 1.94E-4 — 5.92E-3 —
15x 15 3.10E-5 4.07 6.80E-6 4.40 2.56E-4 4.12
31x 31 1.66E-6 4.03 3.28E-7 4.18 1.45E-5 3.95

63 x 63 9.64E-8 4.01 1.81E-8 4.09 8.85E-7 3.94
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TABLE Il
Error Norm (L ;) Dependence on Mesh Size for Test Case 3.1: Mean Values

U \Y P
Grid Error (L) Order Error (L) Order Error (L) Order
7x7 2.02E-4 — 1.03E-4 — 7.23E-3 —
15x 15 8.10E-6 4.22 4.76E-6 4.03 3.63E-4 3.93
31x31 4.48E-7 3.99 2.58E-7 4.02 2.03E-5 3.97
63 x 63 2.63E-8 4.00 1.52E-8 3.99 1.33E-6 3.84

order of accuracy for point and mean values of the variables, respectively. Fourth-or
accuracy is achieved for both the cell averages and the deconvoluted point values.

3.2. Lamb-Oseen Vortex

The Lamb—Oseen vortices are very often used to model aircraft wake vortices decay
motion in the atmosphere. Because of the large disparity of scales between the vortex
radius and computational domain, a numerical method of high-order accuracy is requil
or otherwise numerical dissipation corrupts the solution.

The exact inviscid tangential velocity and pressure solutions are

r r)?
vp(r) = —0<1—e_ﬁ(E) )

2y

1 =22 —pr2
p(r) = T 8n2rer 2 (rcozFSp (—1— e’ + 2ercoz>
c0
_213r2 _IBrZ
—2BT2r2p | EI —El
g 0 p< < I'(:O2 > (rc02 >)>’

where ¢, 6) are the polar coordinates, and El is the exponential integral defined as

00 ot
EI(z):—/ € dt.
L

The vortex parameters used in the computations Igye- 250, ro =3, and g =
1.25643, respectively, the circulation, core radius, and a constant. A low Reynol
number

Re— lo 250
~ v 56.8x 103

=44x10

was selected. A source term equivalent to the viscous fluxes was added to the momer
equations. The computational domaifis= [—10, 10, and Dirichlet conditions are used
in all boundaries.
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TABLE Il

237

Error Norm (L ;) Dependence on Mesh Size for Test Case 3.2

U \ P
Grid Error (L) Order Error (L) Order Error (L) Order
5x5 2.80E-1 — 2.80E-1 — 3.81 —
11x 11 4.44E-2 2.34 4.44E-2 2.34 2.20E-1 3.62
21x21 1.20E-3 5.58 1.20E-3 5.58 1.10E-2 4.63
41x 41 7.50E-5 4.14 7.50E-5 4.14 7.05E-4 411

Table 111 lists the error norms of the predicted velocity and pressure fields for differe
grids showing that the numerical solution is fourth-order accurate. To see the implicati
of the relative magnitude of the errors, it is convenient to say that maximum velocity a
pressure are equal i9 = 9.47 m/s andp = 1532 N/n?, respectively. Relative to these
values, the errors (Lnorm) are less than 0.5% on an 111 mesh, which comprises only
three control volumes in the vortex core radius. Figure 3 shows the velocity profiles
all the meshes considered. The prediction suggests that, using the fourth-order cornr
scheme, a minimum of three points in the vortex core radius is necessary to get acct
solutions.

Radial velocity [m/s]

10.00 —

5.00 —

0.00 —

-5.00 —

-10.00

I — [ '
-10.00 0.00
Distance to the core [m]

FIG. 3. Lamb-Oseen vortex radial velocity predictions.

10.00
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=
7

FIG. 4. Streamlines for test case 3.3.

3.3. Analytical Vortex Decay

The purpose of this test case is to validate unsteady Navier—Stokes solutions in a
domain. The exact solution of the Taylor vortex appears as

j(X, y, t; R&) = —cogx) sin(y)e™

v(X,Y,t; Re) = sin(x) cos(y)e%

1 _at
P(X. ¥, t: Re) = — 7 (coS2x) + cog2y))ere

for which the domair2 = [0, 7]% was used. This domain provides inflow and outflow in
all boundaries and Dirichlet boundary conditions are prescribed.

The final time isT = 0.34657 Re. This corresponds to a decay in the velocity field equi
to half their initial values.

The parameters for the simulation are R4.00 anduye; = £t = 1. The CFL is kept
constant; CFL= 1/8 for all grids. As an illustration, Fig. 4 shows the velocity field topology
in which the streamlines maintain its position with the time evolution.

Table 1V lists the error norms of the predicted velocity and pressure variables for t
different grids and clearly shows that the numerical solution is fourth-order accurate
space and time.
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TABLE IV
Error Norm (L ;) Dependence on Mesh Size for Test Case 3.3

U \ P
Grid Error (L) Order Error (L) Order Error (L) Order
7x7 1.11E-4 — 1.23E-4 — 7.44E-4 —
15x 15 3.77E-6 4.44 4.06E-6 4.48 7.73E-5 2.97
31x 31 1.51E-7 4.43 1.53E-7 4.52 4.80E-6 3.83

3.4. Classical Lid-Driven Cavity Flow

This test case is selected to evaluate the method performance under recirculating fl
Thisbenchmarkis classical (see, e.g., Gitia.[19]). Recently, a spectral solution appearec
[20] of this flow test case, which we use as the reference solution.

The square domai2 = [0, 1]> was discretized with several uniform meshes and Dirichle
boundary conditions and corresponds to zero velocity at all boundaries except for
top surface wherer = 1. The parameters for the simulation are R&000 anduye; =
Lret = 1.

For the purpose of comparison, alongside the fourth-order compact finite volume mett
additional results were obtained with the third-order Quick scheme [21] for convective ter
and central second-order discretization for the remaining ones. The latter combinatio
commonly used in engineering problems involving incompressible fluid flows. This meth
was implemented in the same way as the compact method.

Figures 5a and 5b display theand v profiles in the vertical and horizontal middle
lines, respectively. An excellent agreement with the spectral results is observed ever
the coarse grids. The Quick scheme requires 2220 mesh control volumes to obtain
solutions similar to those obtained with the proposed compact method with ordy380
grid control volumes. However, the solution with the 30 mesh of the present method
requires only 5% of the CPU time required by Quick (22020) for the same parameters.
Furthermore, the compact method with thex880 mesh still requires less computing time
than the Quick scheme (120120).

For the purpose of analyzing the convergence properties of the present Newton—Kry
matrix-free compact method we solve the lid-cavity flow with-Rd 000 for CFL numbers
equal to 10, 100, and 1000. Figures 6a, 6b, and 6¢ present the convergence history c
method for these CFL numbers and for a combination of Krylov subspace dimension:
the solver and preconditioner.

For the low CFL number, the time evolution controls the convergence process, an
quasi-physical evolution is obtained. So, for all combinations of dimensions of the Kryl
subspace in the solver or in the preconditioning the same evolution is obtained. As the (
grows, the required number of iterations for convergence decreases, as long as the |
system of equations is well resolved. The latter depends upon the CFL also. As expet
the preconditioning process greatly influences the solver, making the convergence his
strongly dependent on it.

For optimal results, a CFL increasing strategy (linear or inversely proportional to t
residual decay) should be used. Starting with a small CFL avoids the initial oscillatic
associated with high CFL numbers. As the steady state is approximated, super-li
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FIG.5. (a) Verticalu-velocity profile for test case 3.4. (b) Horizontalelocity profile for test case 3.4.
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FIG. 6. (a) Convergence history for test case 3.4: CGFL0. (b) Convergence history for test case 3.4:
CFL = 100. (c) Convergence history for test case 3.4: GFIL0O0O.
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FIG. 6.—Continued

convergence can be obtained if the (inner) linear system of equations remains well
solved. Other factors, such as the level of approximation in the Gateaux derivative, apy
to have only a minor effect in the convergence process.

4. CONCLUSIONS

A fourth-order compact finite volume method has been developed for the incompress
Navier—Stokes equations. The stencil for convective and diffusive flux approximations c
sists of a one-direction 3-point stencil. The Navier—Stokes equations poses new probl
in the framework of high-order compact finite volume schemes, and they are mainly rela
with the average value of the nonlinear convective fluxes at the control volume faces an
coupling with the continuity equation. An original procedure was developed that ensures
implicit treatment of the average of the convective fluxes. The coupled solution of the d
cretized continuity and momentum equations is performed with an implicit Newton—Krylc
matrix-free method. Because of the coupled solution strategy, no special Pressure—vel
method was required. In addition, the existence of a solution for the intermediate New
iteration in the coupled solution of the equations is proved.

The unsteady form of the governing equations was treated with the standard fourth-ol
Runge—Kutta method in which, at each time step, the implicit solution of the correspond
coupled system of equations for the divergence constraint is obtained with a matrix-f
Krylov method.

The performance of the numerical method was assessed in four problems. They show
the present method is fourth-order accurate in space and time, having promising capabili
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