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This paper presents a finite volume fourth-order-accurate compact scheme for
discretization of the incompressible Navier–Stokes equations in primitive variable
formulation. The numerical method of integrating the Navier–Stokes equations com-
prises a compact finite volume formulation of the average convective and diffusive
fluxes. The pressure–velocity coupling is achieved via the coupled solution of the
resulting system of equations. The solution of the coupled set of equations is per-
formed with an implicit Newton–Krylov matrix-free method for stationary problems.
For simulation of unsteady flows, a standard fourth-order Runge–Kutta method was
used for temporal discretization and the velocity–pressure coupling was ensured at
each stage also using the matrix-free method. Several incompressible viscous steady
and unsteady flow problems have been computed to assess the robustness and accu-
racy of the proposed method. c© 2001 Academic Press

Key Words:high-order schemes; finite volume; compact schemes; navier–stokes
equations.

1. INTRODUCTION

Compact finite difference schemes have recently become popular and they are often called
Padé schemes because of their similarity to schemes obtained from Pad´e approximations.
Lele [1] has shown that high-order compact schemes require narrower computational grid
stencils, have better fine-scale resolution, and yield better global accuracy than standard
finite difference schemes with the same formal order of accuracy.

Several compact schemes have been proposed that can be cast into symmetric or non-
symmetric stencils; see, e.g., Lele [1], Mahesh [2], and Tolstykh and Lipavskii [3]. Adams
and Shariff [4] and Yee [5] present high-order compact methods aimed at problems with
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shock waves. Steady or unsteady Navier–Stokes solutions have been obtained with com-
pact schemes; see, e.g., Gupta [6], Tang and Fornberg [7], Spotz and Carey [8], Wilson and
Demuren [9], or Wilsonet al. [10].

Compact schemes have been used primarily in conjunction with the finite difference
formulation. The incorporation of compact schemes into the finite volume formulation is
more complex and has recently been considered by Gaitonde and Shang [11] and Kobayashi
[12]. Gaitonde and Shang [11] developed a range of fourth-order compact difference-based
finite volume schemes for linear wave phenomena. The formulation combines the primitive
function approach with five-point stencil of sixth- and fourth-order methods. Kobayashi [12]
has formulated and examined a wide range of Pad´e finite volume formulations based on
sliding averages of the variables and has investigated their properties related with accuracy,
spectral resolution, boundary conditions, and stability.

To the authors’ knowledge the particular implementation problems related with high-
order compact finite volume schemes for multidimensional Navier–Stokes equations were
not previously addressed. Hence, the main objective of the present work is to introduce
a fourth-order-accurate numerical method of integrating the incompressible form of the
steady or unsteady Navier–Stokes equations in primitive variable formulation. A compact
fourth-order-accurate scheme for the discretization of the averaged convective and diffusive
cell face fluxes is developed and implemented.

Special effort is dedicated to the numerical treatment of the nonlinear cell face averaged
convective fluxes and the pressure–velocity coupling. The resulting set of equations was
implicitly solved with the so-called Newton–Krylov matrix-free method. These techniques
were studied in Marques and Pereira [13] in the context of the compressible Navier–Stokes
equations, using ENO methods for the reconstruction of the primitive variables. These
authors presented an implicit Newton–Krylov method, which uses the GMRES method to-
gether with various preconditioning techniques, such as Jacobi, polynomial approximations
to the eigenvalues, or the spectrum. The present paper proposes an implicit Newton–Krylov
method for the incompressible Navier–Stokes equations using the compact finite volume
method.

For unsteady flow problems the fourth-order-accurate Runge–Kutta method is used. Four
different flow test cases are considered in order to assess the robustness and accuracy of the
method.

In the next section we present the main features of the numerical method together with
the method used to solve the coupled set of resulting equations. The section closes with
the deconvolution procedure, used to compute the point values of the variables, and the
pressure–velocity coupling. Section 3 is devoted to the presentation of the flow test cases
that demonstrate the method accuracy. The paper ends with summarizing conclusions.

2. NUMERICAL METHOD

The continuity and Navier–Stokes equations that describe the incompressible flow of a
Newtonian fluid can be represented in the intrinsic form as

(a) div(v) = 0 (2.1)

(b)
∂v
∂t
+ div(v⊗ v− σν(v)) = −gradp, (2.2)
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FIG. 1. Mesh example and notation.

wherev is the velocity vector field,p is the specific pressure scalar field, and

σν(v) = ν(gradv+ (gradv)T )

is the deviatoric stress tensor according to the Stokes model.
To develop the finite volume formulation the equations are integrated over each control

volume (see Fig. 1). With the application of the Gauss divergence theorem, Eqs. (2.1) and
(2.2) become

(a) Continuity equation ∫
∂θ

v · n = 0 (2.1a)

(b) Navier–Stokes equations∫
∂θ

(v · n)v− σν(v) · n = −
∫
∂θ

pn, (2.2a)

where∂θ denotes the boundary of a control volumeθ , andn is the unit outward point-
ing normal vector to∂θ . In the finite volume approach each control volume boundary is
usually further decomposed into piecewise linear elements;∂θ = ⋃ f

i=1 γ∗, whereγ∗ are
line segments such that the intersection of two adjacent elements are two vertice points.
Equations (2.1a) and (2.2a) are general integral equations that are valid for any coordi-
nate system. For simplicity, we present the fourth-order method for a Cartesian grid, with
coordinates (x, y) (see Remark 2.1 on the formulation in curvilinear coordinates). Hence,
let {θi j }, whereθi j = [xi , xi+1] × [yj , yj+1], with 1x = xi+1− xi , 1y = yj+1− yj , be a
uniform Cartesian partition of a rectangular domainÄ ⊂ R2. Then, Eqs. (2.1a) and (2.2a)
can be written in the averaged flux balance form
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(a) Continuity equation

([ūy] i+1− [ūy] i )1y+ ([ν̄x] j+1− [ν̄x] j )1x = 0, (2.3)

wherev = (u, ν), and, for instance,

[ūy] i ≡ 1

1y

∫ yj+1

yj

u(xi , y) dy, (2.4)

(b) Navier–Stokes equation

C(v)− D(v) = −Gp. (2.5)

The lettersC, D, andG denote the integral convective, diffusive, and gradient maps, re-
spectively. That is, locally we have

[Ci j (v)]x = ([uuy] i+1− [uuy] i )1y+ ([νux] j+1− [νux] j )1x (2.6)

[Ci j (v)]y = ([uνy] i+1− [uνy] i )1y+ ([ννx] j+1− [ννx] j )1x (2.7)

[Di j (v)]x = ν

[([
∂u

y

∂x

]
i+1

−
[
∂u

y

∂x

]
i

)
1y+

([
∂u

x

∂y

]
j+1

−
[
∂u

x

∂y

]
j

)
1x

]
(2.8)

[Di j (v)]y = ν

[([
∂ν

y

∂x

]
i+1

−
[
∂ν

y

∂x

]
i

)
1y+

([
∂ν

x

∂y

]
j+1

−
[
∂ν

x

∂y

]
j

)
1x

]
(2.9)

Gi j p = (([ p̄y] i+1− [ p̄y] i )1y, ([ p̄x] j+1− [ p̄x] j )1x). (2.10)

We proceed in the next section with the derivation of the compact method for discretizing
the cell face fluxes appearing in Eqs. (2.6) to (2.10).

2.1. A Compact Fourth-Order Finite Volume Method
for the Navier–Stokes Equations

To compute the fluxes of the finite volume discretization of the Navier–Stokes equations,
we look for a Pad´e type relation between the fluxes and the cell average of the primitive
variables. The relations can be obtained in several ways; we use the common Taylor series
approach.

The high-order finite volume discretization should be associated with the variable cell
averages instead of its point values. However, in many reconstruction procedures (see,
for example, [14]), it is common to recover the point values, which are represented by a
piecewise reconstruction polynomial. To obtain the fluxes along the cell faces, it is then
necessary to use a high-order numerical integration method (Gauss quadrature, Simpson,
etc.) that integrates the flux from a set of point values previously selected.

In the present approach, we store and use the cell averages during all the processes (the
point values, if necessary, are recovered at the end of the computation by a deconvolu-
tion procedure; see Section 2.5). This strategy, for the same order of accuracy, simplifies
the computations by reducing the size of the stencil and avoiding the integration of the
reconstruction polynomial associated with point-value reconstruction mentioned above.

2.1.1. Linear Convective Fluxes

Because of the nondissipating nature of their truncation error, we consider centered
schemes. So, by symmetry, the coefficients on the left and right sides are equal.
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Let us consider thēuy as an example. The problem can be stated as follows: Find coeffi-
cientsa andb that satisfy the relationship

aτ1xūy + ūy + aτ−1xūy = b
(
τ 1

21xūxy+ τ− 1
21xūxy

)+O(h4), (2.11)

whereh is a grid parameter, for example,h = 4A
P , whereA is the area, andP the perimeter

of the control volume,1x as well as1y are the grid spacing in thex and y directions
respectively,τ is the shift operator, and

ūxy ≡
∫ 1x/2
−1x/2

∫ 1y/2
−1y/2 u(x + ξ, y+ η) dξ dη

1x1y
(2.12)

is the sliding average. Since we only need the fluxes at the cell faces, taking into account
Eq. (2.11) it is only necessary to store the values of the sliding averages at the centroids of
the control volumes.

With the use of truncated Taylor series (TTS), one can expandu(x, y) in the vicinity of
(x0, y0) as

u(x, y) = u0+ (x − x0)u
(1,0)
0 + (y− y0)u

(0,1)
0 + (x − x0)(y− y0)u

(1,1)
0

+ (x − x0)
2 u(2,0)

0

2
+ (y− y0)

2 u(0,2)
0

2
+ (x − x0)

2(y− y0)
u(2,1)

0

2

+ (x − x0)(y− y0)
2 u(1,2)

0

2
+ (x − x0)

3 u(3,0)
0

6
+ (y− y0)

3 u(0,3)
0

6
+O(h4).

(2.13)

Because we are interested in the mean values only, taking into account that the integral is a
linear operator and the origin at(x0, y0) is the middle point of the face for which we want
to compute the flux, we have

TTS(ūy) ≡ 1

1y

∫ 1y/2

−1y/2
TTS(u(x0, y0+ η)) dη = u0+1y2 u(0,2)

0

24
+O(h4) (2.14)

TTS(τ−1xūy) ≡ 1

1y

∫ 1y/2

−1y/2
TTS(u(x0+1x, y0+ η)) dη

= u0+1yu(1,0)
0 +1x2 u(2,0)

0

2
+1y2 24u(0,2)

0

576
+1x3 u(3,0)

0

6

+1x1y2 24u(1,2)
0

576
+O(h4) (2.15)

TTS
(
τ− 1

21xūxy
) ≡ ∫ 1x

0

∫ 1y/2
−1y/2 TTS(u(x0+ ξ, y0+ η)) dξ dη

h2

= u0+1x
u(1,0)

0

2
+1x2 u(2,0)

0

6
+1y2 u(0,2)

0

24
+1x1y2 u(1,2)

0

48

+1x3 u(3,0)
0

24
+O(h4), (2.16)

and similarly for the other terms.
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Replacing these expressions in Eq. (2.11) and nullifying the coefficients of the derivatives,
one obtains a linear system of equations. Solution of this problem givesa = 1/4 and
b = 3/4.

Therefore, to compute the edge averages at the control-volume faces, it is only necessary
to solve one direction at a time. This requires the solution of only tri-diagonal solutions.
Indeed, for a fixed indexj (which corresponds to a horizontal strip of the domain), we
solve the tri-diagonal system of equations resulting from Eq. (2.11) to obtain(ūy

i, j ) in that
strip. Then repeating this process to all strips we obtain the values of(ūy

i, j ) for all control-
volume faces. The values for other cell face averages are computed analogously. Note, in
passing, that the strip-by-strip computation of the cell averages is the same procedure used
to compute the derivatives in the compact finite difference method [1].

To facilitate the description of the method of solution of the Navier–Stokes equations, it
is convenient to express the previous procedure in matrix form,

ACu
x ūy = BCu

x ūxy, (2.17)

and for the remaining terms we have

ACu
y ūx = BCu

y ūxy (2.18)

ACν
x ν̄ y = BCν

x ν̄xy (2.19)

ACν
y ν̄x = BCν

y ν̄xy (2.20)

Ap
x p̄y = Bp

x p̄xy (2.21)

Ap
y p̄x = Bp

y p̄xy, (2.22)

where, for example,

Ax(n f x× n f x), Bx(nel× n f x)

and

φ̄xy(nel), φ̄y(n f x), φ̄x(n f y),

with φ standing for the vector quantities (cell averages of the primitive variables and its cell
face averaged values) and

nel= (ni − 1)(nj − 1)

n f = ni n j

n f x = ni (nj − 1)

n f y = (ni − 1) nj

ni , nj being the computational grid points in thex andy directions, respectively.
Note that matricesA andB, apart from points close to boundaries, are the same for all

variables. Also, all matrices have a block diagonal form reflecting the decoupling of the
approximation of the cell face averages in one direction from the other. For instance, the
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matrix A can be represented as

A =



Ã

Ã 0
. . .

. . .

0 Ã

Ã


with Ãx(n f x× n f x) or Ãy(n f y× n f y) being the tri-diagonal matrix corresponding to a
horizontal or vertical strip, respectively, of the Cartesian grid.

2.1.2. Diffusive Fluxes

For the diffusive fluxes, for example,∂u
y

∂x coefficientsa andb are obtained from

aτ1x
∂u

y

∂x
+ ∂u

y

∂x
+ aτ−1x

∂u
y

∂x
= b

1x

(
τ− 1

21xūxy− τ 1
21xūxy

)+O(h4), (2.23)

with

∂u
y

∂x
≡ 1

1y

∫ 1y/2

−1y/2

∂u

∂x
(x, y+ η) dη. (2.24)

The solution of this problem givesa = 1/10 andb = 6/5.
In matrix form and for all the existing terms we have

AD
x

∂u
y

∂x
= BD

x ūxy (2.25)

AD
y

∂u
x

∂y
= BD

y ūxy (2.26)

AD
x

∂ν
y

∂x
= BD

x ν̄xy (2.27)

AD
y

∂ν
x

∂y
= BD

y ν̄xy. (2.28)

Generalization of the compact finite volume representations of convective or diffusive
fluxes can be found in [12].

2.1.3. Nonlinear Convective Fluxes

The quadratic terms,uuy, uνy, νux, ννx that appear in the momentum equations need
more careful treatment. One way to extend the method used above to handle such terms is
as follows (for example foruuy): Compute coefficientsa and{bi }i=1,2 such that

aτ1xuuy + uuy + aτ−1xuuy

=
2∑

i=1

bi τ(−i+ 1
2)1x(ū

xy)2+
2∑

i=1

bi τ(i− 1
2)1x(ū

xy)2+O(h4). (2.29)
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Solution of this problem givesa = −1/2, andb1 = 1/4, b2 = −1/4. However, this is a
fourth-order approximation for the square of the sliding averages. Taking square roots
leads to a second-order approximation for the sliding averages. This difficulty should be
overcome by taking an eighth-order compact method for the squares. We proceed in a
different direction, however.

Indeed, instead of trying to approximate the square of a cell face average, for example,
[uuy] i+1, by the squares of cell averages like([ūxy] i+1/2)

2, we approximate the former by the
squares of the cell face average([ūy] i+1)

2 together with some cell averages. For example,
if we compare the Taylor series expansion of [uuy] i+1 with ([ūy] i+1)

2, up to fourth order,
the remaining term is

1y2

12

(
u(0,1)

0

)2+O(h4),

which vanishes for a field that is independent of the coordinatey. This means that for the
nonlinear terms, additional information must be supplied to take into account the variation
of the function along the cell face.

Thus, a second-order approximation ofu(0,1)
0 is enough to recover the desired accuracy

for the approximation of the nonlinear flux. A simple computation shows that if

1yu(0,1)
0 = a1[ūxy] i+1/2, j−1/2+ a2[ūxy] i+1/2, j+3/2+ a3[ūxy] i+3/2, j−1/2

+a4[ūxy] i+3/2, j+3/2+O(1x2, 1y2), (2.30)

then

a1 = a3 = −1

4
; a2 = a4 = 1

4
,

and consequently,

[uuy] i+1 = ([ūy] i+1)
2+ 1

192
(−[ūxy] i+1/2, j−1/2+ [ūxy] i+1/2, j+3/2

− [ūxy] i+3/2, j−1/2+ [ūxy] i+3/2, j+3/2)
2+O(h4). (2.31)

The remaining terms, [νuy] i+1, [ννx] j+1, and [uνx] j+1, are discretized analogously.
Again, to simplify the exposition, the above discretization procedure is stated in the form
of maps,

uuy = BC2

x (ūxy, ūy) (2.32)

uνy = BC2

x (ūxy, ν̄xy, ūy, ν̄ y) (2.33)

νux = BC2

y (ūxy, ν̄xy, ūx, ν̄x) (2.34)

ννx = BC2

y (ν̄xy, ν̄x), (2.35)

whereB is a nonlinear map.
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2.1.4. Boundary Conditions

The boundary conditions at the control-volume faces which intersect the domain boundary
need to be implemented in the Pad´e finite volume compact operator. Dirichlet or von
Neumann conditions require the prescription of flux values in the respective Pad´e operator.

As proved in [12], fourth-order boundary conditions are stable and necessary to keep the
global accuracy of the method. They differ from the common boundary conditions used in
compact finite differences [15], in that the finite difference scheme requires a downwind
(very unstable) approach for the inlet convective term while under the compact finite volume
method we can use the inlet convective flux without approximation. We briefly discuss this
issue below.

Take, for instance, a prescribed Dirichlet boundary condition. This type of boundary
condition abounds in fluid problems. The no-slip condition on a wall for the components
of the velocity, an inlet boundary condition on any variable, the no-flux condition on a
symmetry line, and the far field condition are examples of this type of boundary condition.

Let us write the balance equation of a control volume close to a left boundary. To fix
ideas, we consider the problem of handling the convective flux at a prescribed left boundary.
The balance equation near the boundary can be written as

Cx
2, j+1/2− Cx

1, j+1/2+ Cy
3/2, j+1− Cy

3/2, j + · · · = 0, (2.36)

whereCx
2, j+1/2, Cx

1, j+1/2, Cy
3/2, j+1, andCy

3/2, j denote the convective flux crossing the respec-
tive faces. Now, because the value of the variable is prescribed at the inlet (face 1, j + 1/2),
we insert the exact value ofCx

1, j+1/2 in this equation without any approximation. The re-
mainingCx

2, j+1/2, Cy
3/2, j+1, andCy

3/2, j fluxes are evaluated using the compact method as
explained above. For instance, to compute the flux

Cx
2, j+1/2 = uuy

2, j+1/21y, (2.37)

we use the approximation

[uuy]2, j+1/2 =
(
[ūy]2, j+1/2

)2+ 1

192

(−[ūxy]5/2, j−1/2+ [ūxy]5/2, j+3/2

− [ūxy]7/2, j−1/2+ [ūxy]7/2, j+3/2
)2

,

where [̄uy]2, j+1/2 is evaluated using the compact finite volume method as

1

4
[ūy]1, j+1/2+ [ūy]2, j+1/2+ 1

4
[ūy]3, j+1/2 = 3

4

(
[ūxy]3/2, j+1/2+ [ūxy]5/2, j+1/2

)
and so involves [̄uy]1, j+1/2, which is known, and [̄uy]3, j+1/2, [ūxy]3/2, j+1/2, and
[ūxy]5/2, j+1/2, which are to be determined in the solution process. Since the exact value
of the convective flux is available and enters directly in the balance equation and also
the exact value of the cell face average [ūy]1, j+1/2 is prescribed and enters directly in the
compact reconstruction, the compact finite volume method does not require any downwind
extrapolation.

In contrast, the corresponding finite difference treatment requires an equation for
[∂u/∂x]1, j at the inlet boundary 1, j . The approximation is asymmetric and in its simplest
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form (for fourth-order accuracy) can be written as [15][
∂u

∂x

]
1, j

+ 3

[
∂u

∂x

]
2, j

= 1

61x
(−17u1+ 9u2+ 9u3− u4). (2.38)

Now this last equation is a downwind extrapolation, which, as reported in Carpenteret al.
[15], is unstable. Other types of boundary conditions are handled analogously.

Remark 2.1. The discretization procedure was presented for a Cartesian mesh. In this
remark we briefly discuss the extension of the formulation for curvilinear coordinates. The
latter is indeed deceptively simple.

Consider the conservative form of the Navier–Stokes equations written in a general
curvilinear coordinate system (xi ),

1√
g

∂

∂xα
Cα

i ui u j + · · · = 0, (2.39)

where we have used the summation convection of repeated indexes, the Latin superscripts
indicate the Cartesian components of vectors and tensors,g = detgαβ , with gαβ the metric
matrix, J is the Jacobian,C is the cofactor matrix, withyi the Cartesian coordinate system.
Again, to fix ideas we concentrate in the convective flux. Integration over a control volume
θ then leads to ∫

θ

(
∂

∂xα
Cα

i ui u j + · · ·
)

dx = 0, (2.40)

where in two dimensionsdx = dx1dx2. After using the Gauss theorem, we are left with
the problem of approximatingC1

1u1u1
2
, C1

2u2u1
2
, . . . , C2

2u2u2
1
, where, for example,

C1
1u1u1

2 =
x2+1x2∫

x2

C1
1u1u1 dx2.

The problem is solved if we are able to discretize a triple product. For instance, consider
the productC1

1u1u2
2
. Then, to discretize the latter we recursively apply the procedure for

double products to the subproducts

(
C1

1u1
)
u2

2
, C1

1(u
1u2)

2
, and

(
C1

1u2
)
u1

2

yielding

[
C1

1u1u2
2]

i+1 =
[
C1

1

2]
i+1[u1

2
][u2

2
]+ 1

192

[
C1

1

2]
i+1

(−[u1
12

] i+1/2, j−1/2+ [u1
12

] i+1/2, j+3/2

− [u1
12

] i+3/2, j−1/2+ [u1
12

] i+3/2, j+3/2
)(−[u2

12
] i+1/2, j−1/2

+ [u2
12

] i+1/2, j+3/2− [u2
12

] i+3/2, j−1/2+ [u2
12

] i+3/2, j+3/2
)

+ 1

192
[u1

2
] i+1
(−[C1

1

12]
i+1/2, j−1/2+

[
C1

1

12]
i+1/2, j+3/2

− [C1
1

12]
i+3/2, j−1/2+

[
C1

1

12]
i+3/2, j+3/2

)(−[u2
12

] i+1/2, j−1/2
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+ [u2
12

] i+1/2, j+3/2− [u2
12

] i+3/2, j−1/2+ [u2
12

] i+3/2, j+3/2
)

+ 1

192
[u2

2
] i+1
(−[C1

1

12]
i+1/2, j−1/2+

[
C1

1

12]
i+1/2, j+3/2

− [C1
1

12]
i+3/2, j−1/2+

[
C1

1

12]
i+3/2, j+3/2

)(−[u1
12

] i+1/2, j−1/2

+ [u1
12

] i+1/2, j+3/2− [u1
12

] i+3/2, j−1/2+ [u1
12

] i+3/2, j+3/2
)+O(h4). (2.41)

Thus, to close the approximation it is only necessary to choose an interpolation method,
of the same order of accuracy as the interpolation of the variables, for the geometry and
compute the geometrical data appearing in the discrete equations. For instance, to save
computing time, the cofactor

C1
1

2

can be computed using the Lagrange method for the cell averages,

C1
1

12 = 1

1x1

1

1x2

∫
θ

∂y2

∂x2
. (2.42)

The latter can be computed in the preprocessing stage and stored for later use, by using an
interpolation method for the Cartesian coordinates and numerically integrating the resulting
interpolating function. The resulting approximation of the cell-averaged cofactor should be
of the same order of accuracy as the interpolation for the variables. The remaining terms
are discretized analogously.

Although the length of the expressions increases, the general ideas developed for the
Cartesian grid can still be applied. In particular, we solve for one direction at a time, and
for each strip in the computational space we invert only tri-diagonal systems of equations.

After approximation of the continuum problem with a discrete one, the next issue is
related to the procedure for solving the resulting set of nonlinear equations. This is the
subject of the next section.

2.2. The Stationary Navier–Stokes Equations

Substituting the discretized terms, Eqs. (2.6)–(2.10), into Eqs. (2.3) and (2.5) yields the
following nonlinear coupled system of equations:

([ūy] i+1− [ūy] i )1y+ ([ν̄x] j+1− [ν̄x] j )1x = 0 (2.43)

([uuy] i+1− [uuy] i )1y+ ([νux] j+1− [νux] j )1x

= ν

[([
∂u

y

∂x

]
i+1

−
[
∂u

y

∂x

]
i

)
1y+

([
∂u

x

∂y

]
j+1

−
[
∂u

x

∂y

]
j

)
1x

]
− ([ p̄y] i+1− [ p̄y] i )1y (2.44)

([uνy] i+1− [uνy] i )1y+ ([ννx] j+1− [ννx] j )1x

= ν

[([
∂ν

y

∂x

]
i+1

−
[
∂ν

y

∂x

]
i

)
1y+

([
∂ν

x

∂y

]
j+1

−
[
∂ν

x

∂y

]
j

)
1x

]
− ([ p̄x] j+1− [ p̄x] j )1x. (2.45)

These must be solved together with the compact representation of the fluxes.
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The previous system of equations is nonlinear, coupled, and degenerate—in the sense
that p is not unique.

This nonlinear system of equations can be solved in several ways. In the present work we
consider a coupled implicit method. So, because of the complexity of the relations between
the fluxes and the primitive cell averaged variables and to avoid inverting the relatively dense
pattern of the resulting system of equations the Newton–Krylov method with a matrix-free
technique is selected. This is explained in the next section.

2.3. The Newton–Krylov Matrix-Free Method

Roughly speaking, Krylov methods (such as GMRES and BI-CGSTAB) are based on the
minimization of the residual in a Krylov space. These methods are appropriate for general
sparse matrices. One important feature of them is the fact that only matrix–vector products
and obviously vector–vector products are required.

Given the discretization above, which we write symbolically as

N(x) = 0, (2.46)

the corresponding Newton’s method proceeds as

J(xi)δxi = −N(xi), (2.47)

whereJ(xi) is the Fréchet derivative ofN at the pointxi and

xi+1 = xi + δxi . (2.48)

The matrix–vector products appearing in the Krylov process are of the typeJ(xi) p, for
some vectorp. The productJ(xi) p can be represented as the Gateaux derivative in the
direction of the vectorp, that is,

J(xi)p = ∂N
∂p

(xi), (2.49)

where, by definition, the Gateaux derivative∂N
∂p (xi) is given by

∂N
∂p

(xi) = lim
t→0

N(xi + tp)− N(xi)

t
. (2.50)

Note that to avoid introducing rounding errors in the computation we normalize the direction
and computeJ(xi) p = ∂N

∂p̂ (xi) ‖p‖2 with p̂ = p/‖p‖2.
Grosso modo, the Fréchet derivative, conveys the information on the variation of vector

functionN in any direction, whereas the Gateaux derivative measures the rate of variation
of this function in a given direction only.

We can use these observations to devise a matrix–free Newton–Krylov method, that is,
a Newton-Krylov method where the Fr´echet derivative is not needed and consequently
not stored. Thus, the equation is linearized using the Newton method. Then, we solve the
resulting linear system of equations with a Krylov method. To bypass the computation of
the Fréchet derivative we note that: (a) formally in any Krylov method, what is required is
not the Fréchet matrix, but rather its product with some vector; (b) this product is equivalent
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to the Gateaux derivative times the norm of the given vector, as mentioned previously;
and, finally, (c) for practical purposes, the Gateaux derivative can be approximated by the
unilateral finite difference

∂N
∂p̂

(xi) ∼= N(xi + εp̂)− N(xi)

ε
(2.51)

for some smallε > 0. So, every time a productJ(xi) p is needed in the Krylov method,
we estimate the Gateaux derivative by using Eq. (2.51) and compute the product by using
Eq. (2.49).

Notwithstanding the fact that the procedure described above can be used to find the de-
sired root of the nonlinear problem, it is well known that to be useful for a wide range of
problems, the Krylov methods require a preconditioning method. Moreover, this precondi-
tioning method determines the overall efficiency of the Krylov method, and the usual ILU
preconditioning uses the matrix structure.

Recently, however, Brown and Saad [16] introduced the notion of Flexible-GMRES
(FGMRES). These methods consist of the minimization of the residual on a convenient
subspace, which allows the use of any partial solver as preconditioning. For instance, they
considered the FGMRES method together with the GMRES method as the preconditioning
(FGMRES/GMRES). They compared the FGMRES/GMRES method with the conventional
GMRES/ILU(0) and in the problems studied, both methods displayed a similar convergence
history. In general, the method will converge if the steepest descent direction belongs to the
subspace where the minimization takes place.

The use of a Krylov method as the preconditioning method for the FGMRES is the
key for an efficient Newton–Krylov matrix-free method. In the present work, we solve
the nonlinear system of equations (2.43) to (2.45) by using the Newton–Krylov matrix-
free method, with the FGMRES/GMRES. Next, we briefly describe the method and the
preconditioning technique used in the computations.

Let us consider the GMRES method for the solution of a general linear system of equa-
tions,

AM−1(Mx) = b, (2.52)

where A stands for the matrix of coefficients,M is the preconditioner,x is the solution
vector, andb is the nonhomogeneous term. In the Arnoldi process of the GMRES, an
orthonormal basis is constructed for the Krylov subspace

span{r0, AM−1r0, . . . , (AM−1)mr0}

by using a modified Gram–Schmidt method. In this process some vectorszj = M−1ν j , for
some convenientv j are generated and the solution is sought as a linear combination of
them. Note that the preconditioner is the same for allzj . Now, in the FGMRES to allow for
a greater flexibility in the preconditioning process within the GMRES, the preconditioning
may vary from onezj to the other; that is, in the FGMRES we havezj = M−1

j ν j . Indeed, the
residual will be minimized in this space. So, in the FGMRES/GMRES used in the present
work to compute thezj , we solve the following system of equations

Azj = ν j

using the GMRES for some prescribed convergence level.
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At this point it is useful to summarize the procedure as an algorithm.

1. Start. Initialize the variablesx0 = (u0, v0, p0). Choose the dimension of the Krylov
spacem. Seti ← 0.

2. Newton–Krylov Method:
(a) Setξ0← 0.
(b) Arnoldi process:

i. Computer0 = −N(xi + ξ0), β = ‖r 0‖2, and v1 = r 0
β

. Define an(m+ 1)×m

matrix H̄m and initialize all its entrieshk, j = 0.
ii. For j = 1, . . . , m, do
• Solve to a prescribed levelJ(xi)zj = vj ;
• Computew = J(xi)zj ;

• For k= 1, . . . , j, do

{
hk, j = (w, vk),

w = w− hk, j vk;
• Computeh j+1, j = ‖w‖2 andvj+1 = w

h j+1, j
.

iii. Define Zm = [z1, . . . , zm].
(c) Form the approximate solution: Compute ξm = ξ0+ Zmym, where ym =

arg miny ‖βe1− H̄my‖2 ande1 = [1, 0, . . . , 0]T .
(d) Restart. If satisfied exit the Arnoldi process, else setξ0← ξm and go to step b.

3. Update. Set(ui+1, vi+1, pi+1) = xi+1← xi + ξm. If satisfied stop, else go to step 2.

At this point we should stress that the vector functionN used in the Newton method is
nothing but the discretized continuity and Navier–Stokes equations. Therefore, each product
J(xi) q, for some vectorq, in the Newton–Krylov step requires only the computation of the
balance equation with the vectorxi + εq (compare with Eq. (2.51)).

Because all equations in the full coupled system are forced to be simultaneously satisfied,
the method is very robust and can be applied to any Reynolds number. As we said, the matrix
representation of the Fr´echet derivative is dense. Hence, it is very hard to implicitly solve
the Newton’s equations without the present techniques.

Remark 2.2. The Newton method can be directly applied to the stationary equations.
However, as is well known, the Newton method requires a “satisfactory” guess of the solution
as the starting point. There are several ways to overcome this problem, for instance, a line
minimization of the residual and the iterative increment of the Reynolds number. In the
present work, we obviate this problem by using the implicit first-order Euler method to
solve a pseudo-temporal problem. That is, starting withv0 we solve the nonlinear (NL)
problem,
Find (v̄n+1, p̄) ∈ R2N × RN , where N is the number of unknowns in the mesh, such that(

[ūy]n+1
i+1 − [ūy]n+1

i

)
1y+ ([ν̄x]n+1

j+1 − [ν̄x]n+1
j

)
1x = 0 (2.53)

v̄n+1
i j = v̄n

i j +
1t

mV(θi j )
(−Ci j (vn+1)+ Di j (vn+1)−Gi j pn+1) (2.54)

and(v̄n+1, p̄) ∈ R2N × RN satisfies some boundary conditions.
In this expression,mV (θi j ) denotes the Lebesgue (volume) measure of the control volume
θi j . For a sufficiently small1t , the NL problem has a unique solution and the Newton
method converges quadratically toward it. We prove it by using the Banach fixed point
theorem for complete metric spaces and Theorem 6.3 in Girault and Raviart [17].
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Thus, letV denote the Banach space of discrete averaged vector fields associated with a
given grid, andV0 the subspace ofV that are zero at the domain boundary∂Ä. Let Sdenote
the linear space of discrete scalar fields associated with a given grid. Define the conservative
divergence operatorM : V→ Sas

Mi j (v) = ([ūy] i+1− [ūy] i )1y+ ([ν̄x] j+1− [ν̄x] j )1x

mV (θi j )
(2.55)

for all v = (ūy, ν̄x) ∈ V . Similarly, define the conservative gradient operatorGm : S→V as

(Gm)i j (φ) = (([φ̄y] i+1− [φ̄y] i )1y, ([φ̄x] j+1− [φ̄x] j )1x)

mV (θi j )

for all φ ∈ S. Then, we have the following decomposition:V0 = (V0 ∩ kerM)⊕ (V0 ∩
imGm). Indeed, given aν0 ∈ (V0 ∩ kerM)⊕ (V0 ∩ imGm), it follows that there exists aφ ∈
S, such thatν0 = Gmφ andMGmφ = 0, or((Dx)

2+ (Dy)
2)(φ) = 0, where, for instance,

(Dx)i j (φ) = ([φ̄y] i+1− [φ̄y] i )

1x
,

for all φ ∈ S. A discrete version of the separation of variables approach yields the eigen-
value problems(Dx)

2(ϕ) = λϕ and(Dy)
2(ϕ̃) = −λϕ̃, whereφ(i j ) = ϕ(i )ϕ̃( j ). Now, the

eigenvalues of, for instance,(Dx)
2(ϕ) = λϕ are all negative because it is the square of an

antisymmetric operator. Thenν0 = 0. Now, given aν ∈ V0, we writeν = w +Gmφ, and
determineφ ∈ S from Mν = MGmφ. Then,w = ν −Gmφ as required.

Let P : V0→V0 ∩ kerM be the (oblique) projection ontoV0 ∩ kerM. Let vd ∈ kerM be
a discrete solenoidal vector field that satisfies the boundary conditions. Define onV0 the
functionF : V0→V0

F = idV0 +1tP(−Cm + Dm + g)− vn
0 (2.56)

for some functiong : V0→ V0, and where the mapsCm and Dm are the conservative
convection and diffusion finite differences maps; for example,

(Cm)i j = Cij

mV (θi j )
.

Hence, by puttingv = v0+ vd we conclude that the NL problem is equivalent to finding a
rootv0 ∈ V0 of F with a functiong given by the remaining terms in (2.54) after substituting
v = v0+ vd in this equation. Now, applying the Newton method yields

vk+1
0 = vk

0 − (DF)−1
νk

0

(
F
(
vk

0

))
, (2.57)

where the superscriptk denotes a Newton iteration (not a time step). Solution of (2.57) is
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equivalent to finding a fixed point for the function

H = idV0 − (DF)−1(F). (2.58)

To prove the existence and uniqueness of the fixed point we show thatH is a contraction
on the closure of the open ballBr (vn

0) for some 0< r . From the definition ofF we have

DF = idV0 +1t DK,

where

K = P(−Cm + Dm + g).

For sufficiently small1t , it follows that∥∥1t DK|Br (ν
n
0 )

∥∥ < 1

and soDF is invertible in the Banach algebra of linear operators onV0 for all ν ∈ Br (vn
0).

Moreover, we have

(DF)−1= idV0 −1t DK+ o(1t DK).

Then, for arbitraryu, v ∈ Br (vn
0) we have

‖H(u)− H(v)‖ = ‖u− v− (F(u)− F(v)−1t DK(F(u)− F(v)))+ o(1t (u− v))‖
≤ C1t‖u− v‖,

whereC is a positive real constant, and we have used the smoothness ofF, H, andK (they
are vector functions with polynomial entries). For a sufficiently small1t , it follows that
C1t < 1. Also, given au ∈ Br (vn

0) we have∥∥H(u)− vn
0

∥∥ ≤ ∥∥H(u)− H
(
vn

0

)∥∥+ ∥∥H
(
vn

0

)− vn
0

∥∥
≤ ∥∥u− vn

0

∥∥+1t L

for some positive constantL. For a sufficiently small1t , this shows thatH(Br (vn
0)) ⊂

Br (vn
0) and, so by continuity ofH it follows that the closure of the ball cl(Br (vn

0)) is
invariant forH. Now the Banach fixed point theorem gives the existence and uniqueness of
the fixed point in cl(Br (vn

0)). Finally, the convergence characteristics of the Newton method
follow at once from the smoothness ofF (for instance, apply Theorem 6.3 in Girault and
Raviart [17]). So, by controlling the CFL (possibly during the pseudo-time evolution) we
can ensure convergence as well as accelerate it.

2.4. Pressure–Velocity Coupling

Since the maxtrix-free approach allows a coupled solution of the discrete Navier–Stokes
and continuity equations to be taken without too many memory requirements, the natural
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option for solving the complete coupled system of equations was followed. Pressure–
velocity coupling is, then, automatically guaranteed.

We use a centered method in a collocated grid. Therefore, it is natural to inquire about
the possibility of the existence of a solution with a spurious pressure oscillation pattern.
Clearly, the elimination of the spurious pressure oscillation is equivalent to dim kerG = 1.
For then, the only solution ofGp= 0 is p constant. It is easy to see that with the fourth-
order compact finite volume method, dim kerG = 1 on uniform grids with an odd number
of control volumes and periodic or Dirichlet boundary conditions. Also, for all the types
of boundary conditions and meshes that we have used in the computations, the geometric
multiplicity of the null eigenvalue was 1, which in turn yields dim kerG = 1. Finally, it
should be noted that for all test cases that follow, the pressure fields revealed a pattern free
from spurious oscillations.

2.5. Deconvolution of the Mean Fields

As mentioned above, we store and solve for the cell average values of the primitive
variables. In a fine grid, the latter are close to point values. However, sometimes we need
the local point values of the physical quantities, for example, to plot the pressure distribution.
We recover the point values from the predicted mean values by a “deconvolution” technique.
For simplicity, we use an explicit deconvolution where the point values, stored in the mesh
vertices, are obtained from the existing mean values at the cell facesγi . So, to obtain fourth-
order-accurate point values of (u, ν, p), the general procedure, for example, foru in thex
direction, consists of computing coefficients{bi }i=1,2 such that

ui =
2∑

i=1

bi τ(−i+ 1
2)1xūx +

2∑
i=1

bi τ(i− 1
2)1xūx +O(h4). (2.59)

Solution of this problem givesb1 = 7/12, b2 = −1/12. We remark that this is done in
postprocessing, that is, after the computation of the flow field is finished.

2.6. The Time-Dependent Navier–Stokes Equations

Simulation of an unsteady laminar flow is carried out using the fourth-order Runge–
Kutta method for the semidiscrete form of the equations. That is, starting withv0 we
compute

vn+1 = vn + 1t

6
(k1+ 2k2+ 2k3+ k4)−1tGpn+1 (2.60)

Mvn+1 = 0, (2.61)

where

ki = (−C+ D)(vi ), i = 1, . . . , 4 (2.62)

and

v1 = vn (2.63)
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 v2 = vn + 1t

2
(−C+ D)(v1)−1tGp2

Mv2 = 0
(2.64)

 v3 = vn + 1t

2
(−C+ D)(v2)−1tGp3

Mv3 = 0
(2.65)

{
v4 = vn +1t (−C+ D)(v3)−1tGp4

Mv4 = 0,
(2.66)

where

(vi , pi ) i = 2, 3, 4, n+ 1

are solved in a coupled way with the Krylov matrix-free method explained above.

3. NUMERICAL RESULTS

This section presents numerical results for several test cases aimed at assessing the
accuracy and efficiency of the proposed method for steady or unsteady flow problems.

3.1. Analytical 2D Cavity

In this test case, we consider the recirculating viscous flow in a square cavity driven by
combined shear and body forces. Figure 2 shows schematically the geometry of the problem
and boundary conditions for the velocity field. This benchmark test case appeared in Shih

FIG. 2. Geometry of Problem 3.1 and boundary conditions.
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et al. [18], where the details of the problem can also be found. Here we summarize the
relevant information. The vertical body force is given by the expression

B(x, y;Re) = 8

Re

[
24
∫

ζ1(x)+ 2ζ ′1(x)ζ ′′2 (y)+ ζ ′′′1 (x)ζ2(y)

]
− 64[Y2(x)Y3(y)− ζ2(y)ζ ′2(y)Y1(x)],

where

ζ1(x) = x4− 2x3+ x2

ζ2(y) = y4− y2

Y1(x) = ζ1(x)ζ ′′1 (x)− [ζ ′1(x)]2

Y2(x) =
∫

ζ1(x)ζ ′1(x)

Y3(y) = ζ2(y)ζ ′′′2 (y)− ζ ′2(y)ζ ′′2 (y)

for all (x, y) ∈ Ä ≡ [0, 1]2. The Dirichlet boundary conditions correspond to zero velocity
at all boundaries except for the top surface where

u(x, 1) = 16ζ1(x), x ∈ [0, 1].

An exact solution for this problem exists and is known to be

u(x, y) = 8ζ1(x)ζ ′2(y)

ν(x, y) = −8ζ ′1(x)ζ2(y)

and

p(x, y;Re) = 8

Re

[
24

(∫
ζ1(x)

)
ζ ′′′2 (y)+ 2ζ ′1(x)ζ ′2(y)

]
+ 64Y2(x){ζ2(y)ζ ′′2 (y)− [ζ2(y)]2}.

We have considered four meshes, and the parameters for the simulation are Re= 1 and
uref = `ref = 1. Note that this benchmark has the particularity of having an equal flow field
pattern independent of the Reynolds number. Tables I and II list the errors and numerical

TABLE I

Error Norm(L 1) Dependence on Mesh Size for Test Case 3.1: Pontual Values

U V P

Grid Error (L1) Order Error (L1) Order Error (L1) Order

7× 7 6.87E-4 — 1.94E-4 — 5.92E-3 —
15× 15 3.10E-5 4.07 6.80E-6 4.40 2.56E-4 4.12
31× 31 1.66E-6 4.03 3.28E-7 4.18 1.45E-5 3.95
63× 63 9.64E-8 4.01 1.81E-8 4.09 8.85E-7 3.94
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TABLE II

Error Norm (L 1) Dependence on Mesh Size for Test Case 3.1: Mean Values

U V P

Grid Error (L1) Order Error (L1) Order Error (L1) Order

7× 7 2.02E-4 — 1.03E-4 — 7.23E-3 —
15× 15 8.10E-6 4.22 4.76E-6 4.03 3.63E-4 3.93
31× 31 4.48E-7 3.99 2.58E-7 4.02 2.03E-5 3.97
63× 63 2.63E-8 4.00 1.52E-8 3.99 1.33E-6 3.84

order of accuracy for point and mean values of the variables, respectively. Fourth-order
accuracy is achieved for both the cell averages and the deconvoluted point values.

3.2. Lamb–Oseen Vortex

The Lamb–Oseen vortices are very often used to model aircraft wake vortices decay and
motion in the atmosphere. Because of the large disparity of scales between the vortex core
radius and computational domain, a numerical method of high-order accuracy is required,
or otherwise numerical dissipation corrupts the solution.

The exact inviscid tangential velocity and pressure solutions are

νθ (r ) = 00

2πr

(
1− e−β

(
r

rc0

)2)
p(r ) = − 1

8π2r 2rc0
2

(
rc0

202
0ρ

(
−1− e

−2βr 2

rc0
2 + 2e

−βr 2

rc0
2

)
− 2β02

0r 2ρ

(
EI

(−2βr 2

rc0
2

)
− EI

(−βr 2

rc0
2

)))
,

where (r, θ ) are the polar coordinates, and EI is the exponential integral defined as

EI(z) = −
∫ ∞
−z

e−t

t
dt.

The vortex parameters used in the computations are00 = 250, rc0 = 3, and β =
1.25643, respectively, the circulation, core radius, and a constant. A low Reynolds
number

Re= 00

ν
= 250

56.8× 10−3
= 4.4× 103

was selected. A source term equivalent to the viscous fluxes was added to the momentum
equations. The computational domain isÄ ≡ [−10, 10]2, and Dirichlet conditions are used
in all boundaries.
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TABLE III

Error Norm (L 1) Dependence on Mesh Size for Test Case 3.2

U V P

Grid Error (L1) Order Error (L1) Order Error (L1) Order

5× 5 2.80E-1 — 2.80E-1 — 3.81 —
11× 11 4.44E-2 2.34 4.44E-2 2.34 2.20E-1 3.62
21× 21 1.20E-3 5.58 1.20E-3 5.58 1.10E-2 4.63
41× 41 7.50E-5 4.14 7.50E-5 4.14 7.05E-4 4.11

Table III lists the error norms of the predicted velocity and pressure fields for different
grids showing that the numerical solution is fourth-order accurate. To see the implications
of the relative magnitude of the errors, it is convenient to say that maximum velocity and
pressure are equal toνθ = 9.47 m/s andp = 153.2 N/m2, respectively. Relative to these
values, the errors (L1 norm) are less than 0.5% on an 11× 11 mesh, which comprises only
three control volumes in the vortex core radius. Figure 3 shows the velocity profiles for
all the meshes considered. The prediction suggests that, using the fourth-order compact
scheme, a minimum of three points in the vortex core radius is necessary to get accurate
solutions.

FIG. 3. Lamb–Oseen vortex radial velocity predictions.
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FIG. 4. Streamlines for test case 3.3.

3.3. Analytical Vortex Decay

The purpose of this test case is to validate unsteady Navier–Stokes solutions in a 2-D
domain. The exact solution of the Taylor vortex appears as

µ(x, y, t;Re) = −cos(x) sin(y)e
−2t
Re

ν(x, y, t;Re) = sin(x) cos(y)e
−2t
Re

p(x, y, t;Re) = −1

4
(cos(2x)+ cos(2y))e

−4t
Re

for which the domainÄ ≡ [0, π ]2 was used. This domain provides inflow and outflow in
all boundaries and Dirichlet boundary conditions are prescribed.

The final time isT = 0.34657 Re. This corresponds to a decay in the velocity field equal
to half their initial values.

The parameters for the simulation are Re= 100 anduref = `ref = 1. The CFL is kept
constant; CFL= 1/8 for all grids. As an illustration, Fig. 4 shows the velocity field topology
in which the streamlines maintain its position with the time evolution.

Table IV lists the error norms of the predicted velocity and pressure variables for the
different grids and clearly shows that the numerical solution is fourth-order accurate in
space and time.
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TABLE IV

Error Norm (L 1) Dependence on Mesh Size for Test Case 3.3

U V P

Grid Error (L1) Order Error (L1) Order Error (L1) Order

7× 7 1.11E-4 — 1.23E-4 — 7.44E-4 —
15× 15 3.77E-6 4.44 4.06E-6 4.48 7.73E-5 2.97
31× 31 1.51E-7 4.43 1.53E-7 4.52 4.80E-6 3.83

3.4. Classical Lid-Driven Cavity Flow

This test case is selected to evaluate the method performance under recirculating flows.
This benchmark is classical (see, e.g., Ghiaet al.[19]). Recently, a spectral solution appeared
[20] of this flow test case, which we use as the reference solution.

The square domainÄ ≡ [0, 1]2 was discretized with several uniform meshes and Dirichlet
boundary conditions and corresponds to zero velocity at all boundaries except for the
top surface whereu = 1. The parameters for the simulation are Re= 1000 anduref =
`ref = 1.

For the purpose of comparison, alongside the fourth-order compact finite volume method,
additional results were obtained with the third-order Quick scheme [21] for convective terms
and central second-order discretization for the remaining ones. The latter combination is
commonly used in engineering problems involving incompressible fluid flows. This method
was implemented in the same way as the compact method.

Figures 5a and 5b display theu and ν profiles in the vertical and horizontal middle
lines, respectively. An excellent agreement with the spectral results is observed even for
the coarse grids. The Quick scheme requires 120× 120 mesh control volumes to obtain
solutions similar to those obtained with the proposed compact method with only 30× 30
grid control volumes. However, the solution with the 30× 30 mesh of the present method
requires only 5% of the CPU time required by Quick (120× 120) for the same parameters.
Furthermore, the compact method with the 80× 80 mesh still requires less computing time
than the Quick scheme (120× 120).

For the purpose of analyzing the convergence properties of the present Newton–Krylov
matrix-free compact method we solve the lid-cavity flow with Re= 1000 for CFL numbers
equal to 10, 100, and 1000. Figures 6a, 6b, and 6c present the convergence history of the
method for these CFL numbers and for a combination of Krylov subspace dimensions in
the solver and preconditioner.

For the low CFL number, the time evolution controls the convergence process, and a
quasi-physical evolution is obtained. So, for all combinations of dimensions of the Krylov
subspace in the solver or in the preconditioning the same evolution is obtained. As the CFL
grows, the required number of iterations for convergence decreases, as long as the linear
system of equations is well resolved. The latter depends upon the CFL also. As expected,
the preconditioning process greatly influences the solver, making the convergence history
strongly dependent on it.

For optimal results, a CFL increasing strategy (linear or inversely proportional to the
residual decay) should be used. Starting with a small CFL avoids the initial oscillations
associated with high CFL numbers. As the steady state is approximated, super-linear
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FIG. 5. (a) Verticalu-velocity profile for test case 3.4. (b) Horizontalν-velocity profile for test case 3.4.
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FIG. 6. (a) Convergence history for test case 3.4: CFL= 10. (b) Convergence history for test case 3.4:
CFL= 100. (c) Convergence history for test case 3.4: CFL= 1000.
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FIG. 6.—Continued

convergence can be obtained if the (inner) linear system of equations remains well re-
solved. Other factors, such as the level of approximation in the Gateaux derivative, appear
to have only a minor effect in the convergence process.

4. CONCLUSIONS

A fourth-order compact finite volume method has been developed for the incompressible
Navier–Stokes equations. The stencil for convective and diffusive flux approximations con-
sists of a one-direction 3-point stencil. The Navier–Stokes equations poses new problems
in the framework of high-order compact finite volume schemes, and they are mainly related
with the average value of the nonlinear convective fluxes at the control volume faces and its
coupling with the continuity equation. An original procedure was developed that ensures the
implicit treatment of the average of the convective fluxes. The coupled solution of the dis-
cretized continuity and momentum equations is performed with an implicit Newton–Krylov
matrix-free method. Because of the coupled solution strategy, no special Pressure–velocity
method was required. In addition, the existence of a solution for the intermediate Newton
iteration in the coupled solution of the equations is proved.

The unsteady form of the governing equations was treated with the standard fourth-order
Runge–Kutta method in which, at each time step, the implicit solution of the corresponding
coupled system of equations for the divergence constraint is obtained with a matrix-free
Krylov method.

The performance of the numerical method was assessed in four problems. They show that
the present method is fourth-order accurate in space and time, having promising capabilities.
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